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Abstract

A Boundary Setting Algorithm (BSA) is developed that utilises mi-

gration rates estimated by the program BayesAss. It is subjected to pre-

liminary testing through application of the BSA to a subset of TOSSM

datasets from Archetypes I and II. Two Fully Internally Mixed Areas (FI-

MAs) are considered, connected by varying rates of migration. The objec-

tive of the BSA, implemented through the run.tossm control program, is

to decide whether to manage FIMAs as one or two units. Performance is

assessed using the depletion and catch statistics produced by run.tossm.

Although BayesAss has the potential to provide information relevant to

management, performance of the BSA was found to be poor, apparently

due to inconsistent and unreliable estimation of the migration rate.
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Introduction

The effective management of exploited species requires identification of demo-

graphically isolated populations that can be considered as independent man-

agement units. The International Whaling Commission’s Revised Management

Procedure (RMP) [2] includes options to distribute catches within a given Re-

gion between a number of Small Areas, with each Small Area treated as if it

contained an isolated population. However there is currently no formal basis

for delineating Small Areas or the populations they encompass. The potential

utility of genetic information to achieve this objective prompted the Testing

of Spatial Simulation Models (TOSSM) project [3]. The aim of TOSSM is to

investigate a number of existing genetic methods capable of defining certain at-

tributes of population structure, and to test whether they may provide useful

information for management.
1Department of Mathematics and Applied Mathematics, University of Cape Town, Ron-

debosch, 7701, South Africa.
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In this investigation a Boundary Setting Algorithm (BSA), used to partition

management units (MUs), is developed. The BSA is based on migration rates

estimated by the BayesAss program. Genetic data were provided by the sim-

ulation program Rmetasim [13]. It was assumed that individuals have their

own breeding populations, but are sampled from a number of Fully Internally

Mixed Areas (FIMAs), which represent areas where harvesting takes place. The

BSA groups different FIMAs into MUs, and the suitability of this grouping is

assessed through future projections of population dynamics, under catches set

by the RMP.

Methods

Genetic methods for distinguishing demographically isolated populations can

be grouped into those that segregate a sample of individuals into distinct pop-

ulations, thereby estimating population structure, and those that assume a

specific structure and then estimate migration rates between the component

populations. Because neither approach is likely to be sufficient for manage-

ment purposes [4], it is probable that a combination will be required to define

management units when using genetic samples from undefined populations.

Structural methods [6, 11] assign individuals to distinct populations on the as-

sumption that allele frequencies within each population are in Hardy-Weinburg

equilibrium and sites are close to linkage equilibrium. This requires a prior

assumption about the number of populations that exist. If the number of popu-

lations is known, and samples of known origin are available from every one, then

it is possible to assign individuals to populations other than those from which

they were sampled, and therefore to classify them as migrants or of migrant

ancestry [5, 12]. This is achieved using the transient linkage disequilibrium ob-

served in multilocus immigrant genotypes. A further extension of this approach

is to utilise migrant ancestries to explicitly estimate migration rates per gener-

ation [14]. This is possible because migration rates provide information on the

probability of observing particular ancestries, with the precision of this proba-

bility improving with the number of generations considered. Here we implement

this approach using the program BayesAss [14].

Theoretical background

BayesAss [14] estimates recent migration rates into a population using multi-

locus genotype data allowing for multiple alleles at each locus. Migration rate
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m is measured as the proportion of the population that has immigrated from a

given source, per generation. Notation for the model is specified as follows:

X is the multilocus diploid genotype of an individual;

S is an index that refers to the population from which the individual was

sampled;

M is a population index that refers to the source of an individuals ancestry

(M 6= S implies the individual is an immigrant or of immigrant ancestry);

t is the time at which immigration occured, indexed in generations prior to the

current generation (with t = 0 referring to the current generation);

F is the vector of inbreeding coefficients across populations; and,

p is a three dimensional array of allele frequencies at each locus in each popu-

lation.

We assume that S is known and that all potential source populations have also

been sampled. X is considered to be from a non-migrant, migrant (referred to

as a first generation immigrant) or from an individual with one migrant parent

(a second generation immigrant). These correspond to times of immigration t =

0, 1 and 2 respectively. The ancestry of each individual genotype can therefore

be described by the values of M and t. Given p, and values for M and t,

the probability of an observed genotype P (X | S) can be calculated assuming

generalised Hardy-Weinburg equilibrium within each population. Deviations

from Hardy-Weinburg frequencies are allowed through estimation of F. Because

allele frequencies are assumed to be at equilibrium, it is also necessary to assume

that p is unchanged by migration (i.e. that m is small relative to effective

population sizes).

The likelihood of a particular ancestry conditional on m, L(M, t | m) is

calculated making use of the assumption that m is small. This allows the

probability (here equivalent to the likelihood) that the genotype of an individual

is of a particular ancestry to be calculated using first order terms in m only.

Specifically, if φ is the proportion of alleles in an individual that are of migrant

ancestry, then the probability that an individual is a first generation migrant

(M 6= S, t = 1, φ = 1) is equal to m, and the probability that an individual

has one migrant parent (M 6= S, t = 2, φ = 1
2 ) is 2m. These allow calculation

of L(M, t | m) (see [14]). Earlier generations are not currently considered by

the method because of the presumed statistical difficulties in detecting values
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of φ > 1
2 with a small number of loci. According to these prior assumptions

we therefore expect a fraction m of the population to be migrants, 2m to have

one migrant parent and the remainder to be non-migrants. This implies that

0 ≤ m ≤ 1
3 .

Using Bayes theorem it is then possible to calculate the joint posterior prob-

ability density for any given X and S:

f(m,M, t,F,p | X, S) =
L(X, S | M, t,p,F)L(M, t | m)fm(m)fp(p)fF (F)

P (X | S)

The parameters m, p and F are accorded uninformative (uniform) prior dis-

tributions fm(m), fp(p) and fF (F) respectively. The posterior probability is

estimated using the Markov Chain Monte Carlo (MCMC) method.

The Boundary Setting Algorithm

The BSA was written as a R function that applies BayesAss to estimate migra-

tion rates between sampled populations using microsatellite loci. The R code is

given in the Appendix. The BSA first formats the genetic data appropriately,

calls BayesAss as an external program and then collects information on migra-

tion rates from the MCMC output. BayesAss has been modified so that the raw

MCMC output for all parameters is available for analysis. Migration rates are

estimated from the mean of the Bayesian posterior distribution and input into

a square matrix representing migration rates into each population from every

other population. The BSA then decides whether to consider each pair of popu-

lations (FIMAs) as either isolated or demographically linked. Two populations

are grouped in the same MU if the estimated migration rate between them (in

either direction) is greater than a specified critical value of m, termed critical.m.

Specifically for two populations l and q, if {ml→q ∪mq→l} ≥ critical.m then l

and q are grouped into the same MU. After pairwise groupings, the BSA will

further group MUs together if populations in different MUs are shared. For

example if {m1→2 ∪m2→1} ≥ critical.m and {m2→3 ∪m3→2} ≥ critical.m but

{m1→3 ∪m3→1} � critical.m, then pairwise groupings will give the pairs {1, 2}
and {2, 3}. Because population 2 is shared, the BSA will then combine these to

give a single MU {1, 2, 3}.

Data and simulation procedure

The IWC Scientific Committee has identified five stock structure archetypes

for use within the TOSSM framework [3]. Due to the preliminary nature of
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this work, the focus here is on a subset of scenarios from Archetypes I and II.

Archetype I represents a panmitic population, and Archetype II two or three

populations linked by migration. In this case, an evenly distributed population

of 7500 individuals was assumed for both Archetypes. For Archetype II only

the two population case was considered, with migration rates per year of 5 ×
10−6, 5 × 10−5, 5 × 10−4 and 5 × 10−3. A generation time of 20 years is

assumed throughout, so that these rates correspond to migrant proportions

of 1 × 10−4, 1 × 10−3, 1 × 10−2 and 1 × 10−1 per generation, respectively.

Because populations sizes are equal and migration is symmetric, these can be

considered as values of m. In this context Archetype I is considered to be the

same as Archetype II with a migration rate of one, so that an effective total of

five migration rates is considered. Unfortunately the data were not available for

Archetype II with a migration rate of zero. The data sets utilised were therefore

(in order of increasing migration rates): Arch2 sc2 1; Arch2 sc3 1; Arch2 sc4 1;

Arch2 sc5 1; and, Arch1 sc1 1.

In accordance with previous work [9], implementations of the run.tossm con-

trol program specified a total annual catch of 300 for five years (split equally

between FIMAs), followed by application of the BSA and a then 95 year projec-

tion period. During this period the RMP was applied with catches set according

to the Small Areas (MUs) defined by the BSA, and population abundance esti-

mates becoming available every five years. Note that within this implementation

the BSA is not revisited during the 95 year projection period.

Experimental Design

The total population in each projection was divided into two FIMAs. For

Archetype I, individuals were assigned randomly to each FIMA; for Archetype

II, each breeding population had its own FIMA with no overlap. The objective

of the BSA is to decide whether or not to manage each FIMA separately.

To calibrate the performance of the BSA, management was first simulated

assuming fixed, predetermined boundaries: manage as either one contiguous or

two separate populations. The BSA was then applied to each data set assuming

critical.m values of 0.0, 0.1, 0.2 and 1
3 . Because 0 ≤ m ≤ 1

3 (see Theoretical

background) it was expected that the extreme values of m would reproduce re-

sults obtained assuming fixed boundaries, with critical.m = 0.0 equivalent to a

prespecified contiguous population and critical.m = 1
3 equivalent to two sepa-

rate populations. Intermediate values of critical.m were included to investigate
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Table 1: Number of management units output by the BSA for 20 combinations

of critical.m and migration rate

Migration Rate critical.m

0.0 0.1 0.2 1/3

5× 10−6 1 1 2 2

5× 10−5 1 2 1 2

5× 10−4 1 1 1 2

5× 10−3 1 1 1 2

1.0 1 1 1 2

the performance of the BSA across a range of migration rates.

Because of computer time limitations, analysis was restricted to only one

replicate for each combination of five migration rates and and four critical.m

values. For each of these 20 replicates, 50 genetic samples were drawn from each

FIMA with 10 microsatellite loci per sample [4]. When invoked by the BSA,

BayesAss was run for 21 × 106 iterations with the first 2 × 106 discarded as

burnin [7]. Samples were collected from the MCMC chain every 2000 iterations.

Delta values for each parameter (which define the ’temparature’ of the MCMC

chain) were set to 0.10, giving acceptance rates of 20-60% [7]. The performance

of each run in a management context was assessed using the following statistics

[9]: i) Lowest depletion; ii) Final depletion; and, iii) Sum of catches during

implementation of the RMP. Depletion was calculated as a percentage of the

starting number of individuals for each breeding population, using the actual

population numbers tracked by run.tossm$abund.b.

Results

The decision reached by each implementation of the BSA is given in Table 1. The

outcomes for extreme values of critical.m are as expected. When critical.m =

0.0, FIMAs are returned by the BSA as one MU, and when critical.m = 1
3

FIMAs are kept separate.

Depletion statistics following projections under each of the decisions listed

in Table 1 are given in Tables 2 and 3. For reasons of clarity, where there

are two underlying breeding populations, we only report depletion statistics for

one. Specifically, if the two breeding populations are being managed as one
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Table 2: Lowest recorded depletion

Migration Rate Fixed critical.m Fixed

1 MU 0.0 0.1 0.2 1/3 2 MU

5× 10−6 17.61 11.14 12.94 52.72 61.95 57.39

5× 10−5 5.36 12.79 60.25 17.80 62.34 56.38

5× 10−4 18.94 4.22 0.03 8.15 58.51 56.85

5× 10−3 8.36 25.03 4.10 16.02 54.98 56.86

1.0 53.25 54.41 56.13 57.78 58.18 54.07

Table 3: Final depletion

Migration Rate Fixed critical.m Fixed

1 MU 0.0 0.1 0.2 1/3 2 MU

5× 10−6 36.65 11.22 28.80 61.04 64.92 62.87

5× 10−5 5.36 12.90 65.27 36.52 68.76 56.62

5× 10−4 23.05 34.34 7.57 11.26 64.52 59.80

5× 10−3 28.10 40.76 45.98 34.52 61.15 56.86

1.0 63.10 61.51 58.81 60.20 60.27 61.13

MU (i.e. the two FIMAs are combined), we report depletion statistics only for

the population being harvested (recall that if FIMAs are considered as a single

MU, then catches are only taken from one FIMA) . If the breeding populations

are managed separately, depletion for both is similar. Total catches from all

breeding populations are given in Table 4.

Assuming fixed boundaries, it is clear that when two breeding populations ex-

ist, management outcomes are improved if FIMAs are defined as distinct MUs

(so that each breeding population is managed separately): depletion is less se-

vere and catches are higher. To emphasise this point: if breeding populations

are considered as distinct MUs, not only does this reduce the chances of deple-

tion (increases abundance), but it simultaneously increases the total harvested

catch. When the population is panmitic (migration rate is one), depletion is

similar irrespective of whether the population is considered as one or two man-

agement units, however catches are increased if the population is managed as a

single MU.
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Table 4: Sum of catches across breeding populations

Migration Rate Fixed critical.m Fixed

1 MU 0.0 0.1 0.2 1/3 2 MU

5× 10−6 7315 6235 6315 15940 16640 15190

5× 10−5 6755 6550 16095 6890 15545 15580

5× 10−4 6870 6030 4900 6760 16060 16370

5× 10−3 8050 10155 9460 10040 18535 18690

1.0 15980 16635 16860 16145 7120 8865

The primary concern here is with performance of the BSA at intermediate

values of critical.m. However examination of the MCMC chains produced by

BayesAss suggest that it may not have produced any meaningful or consistent

information regarding the actual simulated migration rates. The MCMC chain

appears to spend a large amount of time close to the boundary values of m, so

that m ≈ 0.0, 0.3. This seems to be a particular problem at low migration rates

(Figure 1). At higher migration rates there is evidence for improved mixing

of the MCMC chain (Figure 2) so that estimates of m may be more accurate

(although clearly still not reliable). For migration rates of 5 × 10−3 this is

true for each of the four BayesAss runs, making them the most informative

indicators of performance of the BSA. However in each case migration rate was

estimated to be high with m > 0.2 for at least one of the FIMAs. The BSA

therefore joined FIMAs into single MUs, which in this case may be the least

appropriate management option.

Discussion

Here a BSA based on migration rates estimated using BayesAss has been

developed and applied to simulated TOSSM datasets in a preliminary man-

ner through implementation of the run.tossm control program. Although the

number of replicates was small, performance of the BSA appeared to be poor,

largely due to inadequate mixing of the MCMC chain produced by BayesAss

during estimation of m. Notably, mixing was not improved when simulations

were re-run using 30 loci from each sampled individual (data not shown). In

instances in which BayesAss has been applied to real datasets in the liter-

ature [1, 14], estimated migration rates frequently appear to be close to the

bounds. This suggests that modifications to the program may have to be made
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Figure 1: Representative MCMC output of migration rates estimated by

BayesAss between two FIMAs connected by a migration rate of 5×10−6, with

the samples shown taken every 20,000 iterations and the first 2× 106 iterations

discarded as burnin.
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Figure 2: Representative MCMC output of migration rates estimated by

BayesAss between two FIMAs connected by a migration rate of 5×10−3, with

the samples shown taken every 20,000 iterations and the first 2× 106 iterations

discarded as burnin.

for it to perform in a more informative manner. One possibility is to implement

Metropolis-Coupled MCMC [8], which runs multiple chains of different tem-

perature, thereby allowing more complete exploration of the parameter space.
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There is an obvious computational burden to this approach. A single run of

21 × 106 iterations took approximately two hours on a standard desktop com-

puter (Pentium 4 processor). However, since these long chains did not appear to

improve mixing, it is probable that much shorter chains of 3× 106 are adequate

[10, 1], particularly in the decision rule framework required here.

It has also been shown that estimation of m may be hindered if the assumption

of constant allele frequencies in each population (unchanged by immigration)

is violated [7], although whether this is true here was not investigated. How-

ever, despite these problems BayesAss has a number of potential advantages.

Specifically it is proposed by its authors as a means to estimate asymmetric mi-

gration rates on an ecologically relevant timescale. Because such information is

invaluable to management it is clear that further investigations are warranted.
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Appendix

Boundary Setting Algorithm

bayesAss.BSA <- function(gs, ea, vea, C, critical.m=0.1,

n.samples.per.fima=50,n.fimas=2,n.microsat.loci=30,sample.year=5)

{

#Extract data from rmetasim output into correct format for BayesAss

baInput=c()

for (FIMA in 1:n.fimas)

{

for (ind in 1:n.samples.per.fima)

{

for (loci in 2:(n.microsat.loci+1)) #1st column is mtDNA seq

{

baInput=c(baInput,ind+(FIMA-1)*n.samples.per.fima,FIMA,loci,

gs[[sample.year]][[FIMA]][,,1][ind,loci],

gs[[sample.year]][[FIMA]][,,2][ind,loci])

}

}

}

baInput=data.frame(matrix(baInput,

nrow=n.fimas*n.samples.per.fima*n.microsat.loci,ncol=5,byrow=TRUE))

names(baInput)=c("ind","FIMA","loci","a1","a2")

#write data file

write.table(baInput,file="baInput.txt",sep="\t",

row.names=FALSE,col.names=FALSE)

#call BayesAss

baRun(n.f=n.fimas)

#read in migration matrix

baOut <- read.table("baOut.txt")

#create starting list with each FIMA assigned to

#its own management unit

numpops=length(baOut[,1])

m.units=list()

for (i in 1:numpops)

m.units[[i]]=i

#to obtain management units first group each FIMA with

#other FIMAs for which m >= crtical.m
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for (i in 1:numpops)

for (j in 1:numpops)

if(i!=j && baOut[i,j]>=critical.m)

m.units[[i]]=c(m.units[[i]],j)

#then combine vectors within m.units if FIMAs are shared

for (i in 1:(length(m.units)-1))

for (j in 1:length(m.units[[i]]))

for (p in (i+1):length(m.units))

for (q in 1:length(m.units[[p]]))

{

try(if(m.units[[i]][j]==m.units[[p]][q])

{

m.units[[i]]=c(m.units[[i]],m.units[[p]])

m.units[[p]]=NA

},silent=TRUE)

}

#finally remove duplicates from each vector within m.units

for (i in 1:length(m.units))

m.units[[i]]=unique(m.units[[i]])

#and trim any NA’s from the list

if(any(is.na(m.units)))

m.units=m.units[-c(which(is.na(m.units)==TRUE))]

return(m.units)

}

Function to call BayesAss

baRun <- function(inputFile="baInput.txt",n.f)

{

file.rename(inputFile,"infile.txt")

start.time=proc.time()

shell("bayesass+.exe")

end.time=proc.time()

bayesAss.Lk.output <- read.table("output.txt",header=T)

column=3

baOut=matrix(rep(0,n.f*n.f),nrow=n.f,ncol=n.f)

for (i in 1:n.f)

for (j in 1:n.f)

{
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column=column+1

print(paste("Migration rate from",i,"to",j,":",

mean(bayesAss.Lk.output[,column][-c(1:1001)])))

baOut[i,j]=mean(bayesAss.Lk.output[,column][-c(1:1001)])

}

print(paste("BayesAss run time:",(end.time[3]-start.time[3])/60,"mins"))

write.table(baOut,file="baOut.txt",sep="\t",row.names=FALSE,

col.names=FALSE)

}

Function to obtain depletion and catch statistics from run.tossm

output

tossm.stats<-function(tossm.trial,start.RMP=6,

end.RMP=length(tossm.trial$abund.b[1,]))

{

n.bps=length(tossm.trial$abund.b[,1])

n.years=length(tossm.trial$abund.b[1,])

depletion=matrix(rep(0,n.bps*n.years),nrow=n.bps,ncol=n.years)

lowest.depletion=c(rep(0,n.bps))

final.depletion=c(rep(0,n.bps))

total.catch=c(rep(0,n.bps))

sum.catches=0

for (bp in 1:n.bps)

for (year in 1:n.years)

depletion[bp,year]=

(tossm.trial$abund.b[bp,year]/tossm.trial$abund.b[bp,1])*100

for (bp in 1:n.bps)

{

lowest.depletion[bp]=min(depletion[bp,])

final.depletion[bp]=depletion[bp,n.years]

for (year in start.RMP:end.RMP)

total.catch[bp]=total.catch[bp]+tossm.trial$catches[bp,year]

sum.catches=sum.catches+total.catch[bp]

}

for (bp in 1:n.bps)

{

print(sprintf("%s %i","Breeding population",bp))

print(sprintf("%s %.2f","lowest.depletion:",lowest.depletion[bp]))
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print(sprintf("%s %.2f","final.depletion:",final.depletion[bp]))

print(sprintf("%s %i","total.catch:",total.catch[bp]))

print("")

}

print(sprintf("%s %i","Sum of catches:",sum.catches))

}
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